
Graham Pedersen / Sam Leventhal
Models Of Computation
Pr. Gopalakrishnan

Stochastic Nondeterministic Automaton and Applications

Abstract:

As application to the methods of computation taught in class we have programmed a Nondeterministic
Finite Automaton to replicate various literary works, where our program output is based on stochastic production
laws designed according to chain frequencies within any given text file. For the purpose of example our
production schematic is used to produce replicas of such stories as To Kill a Mockingbird and multiple
Shakespearean plays. The purpose of this write up is then to demonstrate how this automaton was implemented,
what possible alterations can be made to achieve other simple computational models, and the possible
advantages/disadvantages they may provide in trying to replicate human writing. More specifically it is shown
that our Nondeterministic Finite Automaton, based on Markov chain production rules can be interpreted as a
context free grammar and can be easily altered into a Context Sensitive Grammar for various applications or
improvement in certain areas.

Parsing/Production:

Our goal is to create code which takes text files as a passed parameter and returns new work based on

the original text that will have similar word frequency and choice. The outputted text is meant to be text files
which seem to be written by a similar author, i.e. similar spacing, dialog, word choice and so on. We accomplish
this based on the ASCII character frequencies, where words are taken as a single element. The success of this
method is due to the fact that during a random production, our program will be able to output the most likely
word or formatting character. Producing the most likely character consecutively is not enough however for a
legible and pleasing result. In an attempt to then preserve sentence structure and grammatical relations we
consider the most frequent word chains frequencies. Where is a common word chain if

 are often preceded by . For our purposes we only consider cases where n=3, meaning word
chains of length three

For our implementation all production rules are determined during parsing. By using word and word
chain frequencies we can form stochastic production rules which terminate on terminals that are most likely
likely with respect to the passed text. Our overall method relies on the architecture of how data is stored. The
program begins looking at the text in three word chains, the first word of a chain will be entered into a dictionary
which links to a list. With the list the succeeding two words will be placed. This process occurs every time a
word is read. The end result is a dictionary of all words lined to the two words which follow. This dictionary
relation can then be used to find the most probable words to follow any given word. If a word is used frequently
in passed text it hold a higher probability of being chosen since it occurs more often in the dictionary, if this
common word is often connected to a certain word chain then this chain also holds a higher probability, since in
the dictionary it is most often linked to this chain. If however a word only occurs once then the succeeding
words are guaranteed to be produced. This is beneficial if we consider proper nouns such as full names of
people. The more often a word occurs the more dynamic its production scheme becomes, normalizing the
probabilities between the word chains that may follow it. Say for example that our text contained the three
phrases {“Science is fun”, “Science is interesting”, “Science is interesting”} our relation representation would
then be of the form {“Science”: “is fun”; “Science”: “is interesting”;”Science”: “is interesting”]}. Now after
printing the word “Science” and being confronted with the question as what must come next we may randomly
choose an element from “Science” ’s related array giving a 77% chance of saying “Science is interesting”. This
production behavior can be used to cause a snow ball effect. We first start by picking the most probable starting
word, where starting is determined by words preceded by special characters. Once the initial word is placed our
word relation map determins the most likely three words to follow it. Once these three words are written the last
word outputted is used for the next three word production, this then continues for probabilistic sentence lengths.

To re-iterate, the last word produced is used as the key in the word relation map to find our next three words. In
order to prevent infinitely long documents a list consisting of sentence lengths, with length based on number the
number of words, is recorded while a file is parsed. The length of a sentence is then decided prior to production.
The entire replica text is then written in this manner until it reaches a equal number of sentences as are in the
original text.

Originality of Output Files:

Being a learning algorithm the more input you feed into it (i.e. the more text samples it is able to parse) the
more unique the product will seem. Since the size and diversity of a file is directly proportional to the size of
our word relation map (dictionary) after parsing a larger and more dynamic text file allots for a wider range of
production rules. If, for example, we passed a file consisting only of the line “A boring example.” the output
would always be “A boring example”. However when we feed it three Shakespearean works the outcome can be
very interesting and quite funny (see “Applications” below). In a similar manner the word chain length used also
effects output complexity. If we were to use larger word chains, say ten in a extreme case, then the output file
would preserve grammar laws to a better accuracy, seem more similar to the original, but all at the expense of a
more genuine and individual replica. Increasing word length is identical to decreasing file size, and by limiting
sample size we encounter the problem discussed earlier.

Production Method as Non-Deterministic Finite Automaton and Context Free Grammar:

Implementation as non-deterministic automaton:

This production method is easily interpreted as a non-deterministic finite automaton. The code being analogous
to a NDFA is a by-product of requiring every transition cause a production, ending on a certain indicator, having
a start state, and defining a map between words. Having production rules from one state to another (where
states are considered to be words) based on order of occurrence in a passed file and frequency from one state
to another provides us with a delta function. We also know there to be a stop state (defined as a certain number
of transitions) and a start state (set to be words which follow special characters). Our implementation being
non-deterministic is due to the fact word chains are made more probable if repeats of a production rule exist,
for this reason there are multiple occurrences of the same transition. This random choice is equivalent to an
epsilon transition. This approach to stochastic production could easily be made a deterministic finite automaton
by having epsilon transitions and repeated production rules replaced by transitions based on probability values
(see “deterministic finite automaton implementation” for more details). The dictionary used in our code is a
list of transition rules where each word serves as a non-terminal and the production rule is determined by the
word combinations that follow it. Our dictionary is then a list of context free grammars. More specifically the
stochastic free grammar is a five tuple of the for < Q,W, WR, LT, S> defined as follows:

 Q:= The set of states consisting of words and word pairs.
 W := The alphabet, consisting of all words read from the input file.
 WR := A “word relation” Delta function. The delta function relates each word to every three word group that
has occurred after it within the input file. We allow multiplicity in word relations which results in probabilistic
behaviour.
 LT := The terminal. The terminal is based on the most probable line length, where the line length is chosen at
random, but line lengths that occur more often in the passed text are more likely to be chosen.
 S := Start state. The start state is a word chosen at random from a list of words with various weights. Words
that occur more often in the text as starting words, as the first word of a sentence, will have a larger weight.

We can view the NDFA graphically as a transition between states based on words. The existence of repeats
as shown below is the cause of both non-determinism and a method to produce word chains of higher
probability.The number of words within a sentence would be equal to the number of transitions in our NDFA,

making the last node the final node. In the example below the NDFA would have a 33% chance of producing
, a 17% chance of producing and a 50% chance of producing .

Implementation as deterministic automaton:

We have shown that by relying on repeated entries of a word with varying productions is the root of our
stochastic NDFA. In order to implement a deterministic finite automaton we would need to eliminate repeated
transitions. By eliminating repeated states we must consider a new method of preserving a the fact word chains
of higher frequency are more probable to be produced. The solution is creating a DFA defined by a six tuple:
<Q, Sig, Del, q0, >. As before Q is the set of states (in our case words and word pairs), Sig is the alphabet we
may use (words), Del the Delta function (relating a word to its two successors), and q0 is the start state (words
following special characters). We differ from before with the use of where consists of two forms: the
probability of transitions on a given element of the alphabet, and probability of terminating on a given element.

Implementation as context free grammar:

As explained by the Chomsky Hierarchy knowing we have a implementation that is a NDFA, which is
equivalent to a regular language, implies looking on our code as a context free grammar is only a matter of
interpretation. It is a obvious our production rules act as a context free grammar themselves. In our dictionary
the starting production would be the words most likely found after special characters. The start word would then
produce any of its possible word relations. Non-terminals that are repeated therefore have a higher production
probability. To use the previous example our CFG would be as follows:

 (probability of = 33%)

Our initial word therefore has six possible production rules to choose from, and due to repeats some productions
or more probable. A more interesting language longer would consist of multiple chaining, requiring non-
terminals in the products of the initial states production.

Ambiguity of Markov Chaining:

It is interesting to point out that our grammar is non-ambiguous. The Markov production method will produce a
word sequence by starting with a word with in the given input, then connecting the words most probably to
succeed that word. Our algorithm is especially good at mimicking written sentences due to the way the starting
words and weighted probability are chosen. As a result multiple parse trees may occur at any point during
sentence production, but the final result followed a unique parse path. Being probabilistically determined
different parse trees hold different likely hood unlike a traditional CFG. The probability of a specific parse tree is
easily calculable: First we define t = (p_1, p_2, …,p_n) to be the production rules used in a given tree, second
we use W = (w_1, w_2,…,w_j) to be the terminals produced by production rules which produce terminal states,
and lastly (%1,%2,…,%n) denoted the probability of using production rule p_1, p_2,…,and p_n. The parse tree
could then be viewed graphically:

The probability of the word chain W_1W_2W_3 can be found using the above tree and would be equal
to %1*%2*%3. This can be generalized to any word chain produced. If Wj is our word chain consisting of j
words we get

Applications:

To test our Markov algorithm we have used the books To Kill A Mockingbird, Hamlet, Romeo & Juliet,
and the Tempest. To demonstrate, exerts from the text will be displayed followed by our artificially created
duplicate.

To Kill A Mockingbird (original):
“When Walter shook his head a third time someone whispered, Go on and tell her, Scout. I turned

around and saw most of the town people and the entire bus delegation looking at me. Miss Caroline and I had
conferred twice already, and they were looking at me in the innocent assurance that familiarity breeds

understanding. I rose graciously on Walter's behalf: Ah, Miss Caroline?What is it, Jean Louise?Miss Caroline,
he's a Cunningham. I sat back down. What, Jean Louise? I thought I had made things sufficiently clear. It was
clear enough to the rest of us: Walter Cunningham was sitting there lying his head off. He didn't forget his lunch,
he didn't have any. He had none today nor would he have any tomorrow or the next day. He had probably never
seen three quarters together at the same time in his life. I tried again: Walter's one of the Cunninghams, Miss
Caroline. I beg your pardon, Jean Louise? That's okay, ma'am, you'll get to know all the county folks after a
while. The Cunninghams never took anything they can't pay back no church baskets and no scrip stamps.”

Artificially generated form:
“On his way back, Boo would die of mold from Abbottsville; we saw Atticus standing in our back yard

and kept his own purposes, as Dill Harris's, were never tempted to tell you my best company manners, I asked
her head at what you were doing. Atticus calmly folding his hair and put her on it crawled out of many words in
that nigger-nest, passed we would look right puny for you. Think they're too afraid to a decision about Maycomb
County being in the same room with Boo bit it off my reading lamp there was no other reason than two weeks
later that I realized that this was our reward, there with all those. They buy me everything that's happened here
messed us up a rock and his fingernails were from Atticus, who ventured to correct him, Colonel Maycomb had
families like tellin' this morning she began earlier in the evening of November twenty-first of last year passed,
released from him, he said she'd probably be obliged to dodge the unseen from on top of every college football
player in the foot-washers thought that was what you identify the man was crossing our Absolute Morphodite go
through the diningroom, and the clink of coffee cups and the soft brown hair and Uncle Jack in it on weekdays
as well as Jem when she drank it gratefully.”

The Tempest (original):

Boatswain
When the sea is. Hence! What cares these roarers
for the name of king? To cabin: silence! trouble us not.

GONZALO
Good, yet remember whom thou hast aboard.

Boatswain
None that I more love than myself. You are a
counsellor; if you can command these elements to
silence, and work the peace of the present, we will
not hand a rope more; use your authority: if you
cannot, give thanks you have lived so long, and make
yourself ready in your cabin for the mischance of
the hour, if it so hap. Cheerly, good hearts! Out
of our way, I say.
Exit

GONZALO
I have great comfort from this fellow: methinks he
hath no drowning mark upon him; his complexion is
perfect gallows. Stand fast, good Fate, to his

hanging: make the rope of his destiny our cable,
for our own doth little advantage. If he be not
born to be hanged, our case is miserable.

The Tempest 2 (our rendition)

STEPHANO
That shall be my precedent; as e'er my mother was a piece of virtue,
 and glosses, being rather like a dream than an assurance
That my remembrance with A heaviness.
She Is daughter to wet the grief that's beauty's canker, thou mightst call it, fair play with sparrows And here was
left them
I' the Duke of Milan
And his brave god and bears.
This mis-shapen knave,
His forward voice now incapable; confederates--
So have we all, good sir, When it is baked.

CALIBAN
Thou dost me and madest much for him; he have
never drunk now: where had a tongue with old cramps,
Fill all thy bones are coral made;
Those are pearls that were his innocent child: for all is
but mistake the truth you speak doth lack some gentleness
And time to the party?

CALIBAN
Yea, his dread trident.

SEBASTIAN
[Aside to ANTONIO] The next advantage
Will we take leave of him and keep him from these beasts!
For he is, O you wonder!
How many goodly creatures are there suck I:
In virtue than in a rock by the
sea-side where I shall
have been, I not hear him? You fools! I and husks
Wherein the deck, in every fertile inch o' th' island;
And crown what I few attendants
And deal in her son, as thou shouldst be: the mad and play'd
Some tricks of barren ground, long life,
With such stuff
As dreams are made on, I see,
As my trust was; which had indeed the duke; out ten to see a goodlier man i'
the moon! A most poor cell, where you keep a care,

Shake off slumber, and beware:
Awake, awake!

Next we extrapolated word chain frequencies from all three of Shakespeare's works. By doing this we hoped to
preserve more general word constructions unique to Shakespeare himself and not just within a specific work.
Since we do not produce new proper nouns however all characters from the three plays are merged into one. If
you would like to see “The Lost Shakespearean Play” a copy can be found on out website as well as many other
examples.

Turing Complete:

As we have shown earlier the implemented stochastic production can be represented by a stochastic
context free grammar. Being able to be expressed as a context free grammar shows that the probabilistic method
of sentence construction is Turing complete. The generalised version is not limited to the latin alphabet however
and may be applied to any finite alphabet (such as notes of songs or genotypes within a population). Markov
chains being Turing complete provides the incredible implication that all computational methods may be
expressed in a manner based on probabilistic production rules.

Possible Improvements:

Currently our production rules transition based on the most probable words to follow a specific word.
For this reason grammar is not certain to be preserved. Improvement could be made by enforcing a context
sensitive grammar that implements Markov production. Many methods of doing this are possible. One such
method would would be to establish grammar laws prior to production, rather then indirectly enforced during
production as they are in current word by word stochastic context free grammar. To establish grammar rules the
text would be first parsed based on word types, such as verb, noun, proper noun , ect. The parsing procedure
would then be similar to the detection of frequency of word combinations used currently. For example when
parsing you may see a noun occur three times followed by three different situations: {noun: verb adjective, noun:
verb noun, noun: verb noun}. During production then the grammatical production rule will be decided prior to
word production. In the above example there is a 33% chance of choosing a noun connected to a verb and
adjective. Once the grammatical production rule is decided we then choose a specific frequent noun then the
most probable two words to follow, checking the two words satisfy the grammar production. Although random
word production inherently preserves some grammar rules, by enforcing the rules prior we increase the
probability of common sentence structure. This can be viewed as choosing the most probable derivation tree
which is dependent on on the most probable word string. The probability of a specific tree parse and specific
word alignment is easily found:

where is the probability of producing the word chain using the specific tree “t”. is the
probability of this tree and is the probability of producing the terminal using context rule “c”. By
merging the two grammar productions in this way (i.e. first lingual grammar then probable word combination)
interesting applications are made possible. For example we are no longer limited to one any one documents
word/grammar pattern. We could therefore make grammar production rules from one text (say The Odyssey by
Homer) and use the word constructions from another (Shakespeare).

One of the most difficult obstacles to overcome is parameter matching. By not having any form of dynamic
memory, and not expressing our Markov chain as a parameter matching Context Free Grammar, parameter

matching (such as matched parenthesis or quotes) becomes a matter of luck. Because of this the NDFA performs
production with no knowledge of previous productions i.e. quotes, parenthesis, etc... are left hanging and remain
unmatched. Our stochastic production has shown to reproduce short term dependencies very well, but due to
implementation does not have a sense of long term dependencies. Because of the complexity of relations in
any scripting language our initial goal of randomly producing computer code was feasible, but solving the
complexities of long term relations in code would have been nearly impossible within the time restraint given.
It is still interesting however to investigate possible methods of implementation we could use to convert our
context free grammar to a context sensitive Markov production schematic. One possible extension would be
to allow certain states, both terminal and non-terminal, to have auxiliary memory which would be used for
communication with later production rules. The elements within this memory (which most conveniently would
be a queue) would act as the context sensitive rules effecting certain probabilities of production. In regards
to matching quotes for example: when a quote is produced, it will be pushed on the queue, then production
continues peeking on the queue each time, if then a quote is a possible terminal for a given production, the
quote within the queue would serve to enforce a 100% probability of a quote production. This implementation
would be similar to enforcing a recursively enumerated CFG whenever a indicating parameter is read. In
other words, we would use right-linear production rules as previously demonstrated, be on the occurrence of a
delimiter requiring matching we would begin a production scheme within two terminals such as the one seen for
parentheses matching. To demonstrate we adopt the previous example:

if != ‘(‘

else if == ‘(‘
)
if != ‘(‘

else if == ‘(‘
)

Uses and Justifications:

Word and letter frequency analysis have long been used to identify documents who's authorship is not
known. By taking word frequencies from a piece it is possible to create a word use “rubric”, allowing another
author to produce text similar to the first. This is very interesting from a literary perspective in that Markov
chain analysis allows the use of computers to better understand literary styles and distinctiveness. A more
sophisticated approach would not be restricted to specific words scene but rather extrapolating general speech
patterns. This would allow the synthetic production of sentences that so closely resemble the original authors
which are themselves distinct new sentences. Eventually artificially created speech could not be picked out
reliably as having been built by a machine or by a person. Although not core to the development of AI this
would be an important step to building programs that understand and can create human language and might
later be a critical part of an AI that passes the Turing test (which requires a mastery of human language well
beyond computers of the modern day). Although our simple sentence CFG cannot capture these complexities
it sometimes makes surprisingly good sentences. If for example you use texts of a slightly older English (Jane
Austen and Shakespeare were both used in testing) the antiquity disguises many of the slight grammatical
failings and reads very well. Although far away from a dynamic story, with persistent characters and plots, some
form of procedurally generated stories, characters, and settings (as used in many video games) are easily within
the realm of possibility.

In effect through the use of finite state machines it is possible to replicate the “identity” of various
works. By looking on organizational patterns between elements (in our case words) it is possible to enforce a

quantifiable measure of identity for the object under question. Using the complete list of production values for
elements all that is then required to produce a persuasive replica is a finite automaton which preserves these
organizational units.

For more examples and a executable form of the code for you to play with visit:
http://www.eng.utah.edu/~leventha/

Works Cited

Miller, Michael. Mark, Kevin. Grenander, Ulf. “Constrained Stochastic Language Models”. 1994.

Rassoul-Agha, Firas. “What is Entropy and Why Is It Useful?”. Department Mathematics University of Utah.
2011.

Grinstead, C. and Snell, J. Introduction to Probability. American Mathematical Society. Note: Chapter
11 covers Markov Chains.

Higuera, Colin de la. Oncina, Jose. “Learning Stochastic Finite Automata”. University Saint-Etienne.

http://www.eng.utah.edu/~leventha/
http://www.eng.utah.edu/~leventha/
http://www.eng.utah.edu/~leventha/
http://www.eng.utah.edu/~leventha/
http://www.eng.utah.edu/~leventha/
http://www.eng.utah.edu/~leventha/
http://www.eng.utah.edu/~leventha/
http://www.eng.utah.edu/~leventha/
http://www.eng.utah.edu/~leventha/
http://www.eng.utah.edu/~leventha/
http://www.eng.utah.edu/~leventha/
http://www.eng.utah.edu/~leventha/

